
FEATURE

Predicting the performance of 
extreme-scale supercomputer 
networks  |

A 
modern supercomputer is the Internet in a microcosm, with tens of thousands of nodes—
computers not much di�erent from the one you may be using to read this article—all 
hooked together via a high-speed network. However, while computers on the Internet 

operate largely independently of each other, supercomputers regularly harness the power of 
thousands to many tens of thousands of nodes at once to run a single application signi�cantly 
faster than any lone computer could. Coordinating the e�orts of so many nodes requires massive 
amounts of communication, making the design of the interconnection network critical to the 
performance of the supercomputer as a whole. 

In this article we present technology we are developing to predict the impact of various network-
design alternatives on the overall performance of supercomputing applications before the 
supercomputer is even built. This is important because a large supercomputer can easily cost 
tens to hundreds of millions of dollars (and in the case of Japan’s K supercomputer, over a billion 
dollars). Being able to evaluate network technologies during their design phase helps ensure that 
the supercomputer will provide as much performance as possible to applications. 
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Network topologies

Supercomputers gain their performance edge from 
parallelism, the ability to perform many pieces of 
work at the same time. Taking advantage of a super-
computer consequently requires an application to 
divide up the work it has to perform into small chunks 
that can be spread over a supercomputer’s nodes. In 
practice, some of these chunks of work depend on 
other chunks. 

Consider, for example, an arithmetic expression 
such as (5+5)×(6+8). �e two sums can be computed 
concurrently, but the product cannot be computed 
until a�er both sums have been computed. �is neces-
sitates communication, commonly taking the form 
of inter-node messages sent over a communication 
network. �e node computing one sum has to tell 
the other node when it has �nished and what sum it 
computed so the latter node can perform the multipli-
cation. (Alternatively, both nodes can communicate 
their sum to a third node, which can multiply the two 
sums.) Network speed is critical to application perfor-
mance. If the network is too slow relative to the time 
spent in computation, which is likely the case for our 
simple arithmetic example, there will be no perfor-
mance gain to be had from parallelism, and the super-
computer’s performance capabilities will be wasted. 

While the Internet is composed of a motley con-
nection of subnetworks haphazardly linked together, 
supercomputer networks gain some of their speed 
advantage by exploiting homogeneous hardware ar-
ranged into regular patterns. �is avoids some nodes 
lying in the boondocks of the network and slowing 
down the entire application whenever distant nodes 
need to communicate with them. Figure 1 illustrates 
three topologies out of endless possibilities. Contrast 
the irregular structure of �gure 1(a), which illustrates 
the graph nature of the Internet’s topology, with the 
symmetry in each of �gures 1(b) and (c), which il-
lustrate two common supercomputer topologies: a fat 
tree and a three-dimensional torus (i.e., 3-D torus). 

Nodes in the �gure are shown as blue spheres. 
(Each of a modern supercomputer’s nodes typically 
contains 10–100 processor cores, making a node a 
powerful computer in its own right.) Network links 
are portrayed in the �gure as lavender tubes and 
switches are portrayed as salmon-colored boxes. A 
switch receives data on one link and, based on where 
the data is to be delivered, sends it out on another link. 

FIGURE 1. Three examples of network topologies. Figure (a) 
shows an example of a small-world network topology. Figure 
(b), which depicts a fat tree, and �gure (c), which depicts a 3-D 
torus, are two common supercomputer network topologies. 

(a)

(b)

(c)
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For example, if the le�most node in the fat tree de-
picted by �gure 1(b) needed to communicate with the 
rightmost node, it could send data to the switch above 
it, which could forward the data to the switch above 
it and then to the switch above it. �e topmost switch 
could then forward the data diagonally down and to 
the right, then diagonally down and to the right again, 
and �nally down to the destination node. 

An alternative route would be to start with a couple 
of diagonally upward-and-rightward hops followed 
by vertically downward hops. (As an exercise, see 
if you can �nd a third path from the le�most node 
to the rightmost node. Are there any more routes?) 
We use the term routing algorithm to describe the 
process by which switches select one route among 
the alternatives. 

�e importance of a topology such as a fat tree 
is that there are multiple ways to get from any node 
to any other node. Hence, if one route is congested, 
data can proceed along a di�erent route. Consider 
an analogy to cars and roads, with cars represent-
ing data, roads representing links, and intersections 
representing switches. �e more roads connecting a 
residential neighborhood to a commercial district, the 
less tra�c is likely to appear on any given road. At the 
extreme, one could connect every node to every other 
node in a supercomputer to eliminate all congestion. 
In practice, this is not done for the same reason that 
there are not private roads connecting every house to 
every other house in a town—cost. Switches and links 
are expensive; hence, a network designer must simul-
taneously minimize the number of switches and links 
while maximizing the number of alternative routes 
between pairs of nodes. A 10,000 node supercomputer 
with all-to-all connectivity would require one hundred 
million links. At even a dollar apiece (an unrealisti-
cally small amount), this would dominate the cost of 
the supercomputer. 

Figure 1(c) illustrates a 3-D torus, another com-
mon supercomputer network topology and one 
that makes di�erent trade-o�s from a fat tree with 
respect to switch and link count and alternative 
paths. In this topology, nodes and switches are ar-
ranged in a cube (or rather, rectangular cuboid) 
formation, and wraparound links enable data sent 
out one side of the network to re-enter on the other 
side. For example, if the node in the lower le� of 
�gure 1(c) needed to communicate with the node 
in the upper right, the long way would be to travel 

up-up-up-right-right-right-back-back-back. However, 
the wraparound links enable the data to travel down 
to the topmost position, then le� to the rightmost 
position, and �nally forward to the backmost position, 
taking three hops instead of nine. 

Putting cost arguments aside for the moment and 
assuming the same node count in both networks, 
could a fat tree be expected to outperform a 3-D 
torus, or would the 3-D torus likely be the faster net-
work? In the next section, we discuss how to answer 
this question. 

Simulating networks

As creating a new network is expensive and time-con-
suming, we want to be able to gauge how well a given 
network might perform in advance of its construction. 
�is is commonly done via network simulation—mim-
icking hardware’s behavior with slower but vastly more 
malleable so�ware. We again turn to a car-and-road 
analogy. Consider the situation of bumper-to-bumper 
tra�c on two single-lane roads that merge into one 
single-lane road, as shown in �gure 2. It would be 
prohibitively expensive to construct the roads and hire 
drivers to drive in the speci�ed pattern just to deter-
mine the speed at which tra�c can move. Instead, one 
could write a computer program that moves virtual 
cars on virtual roads and measures how much time 
elapses in this virtual world. In networking terms, this 
approach is called �it-level simulation because it tracks 
every �it (a unit of data, typically a byte) as it moves 
from switch to switch throughout the network. 

A

C

B

FIGURE 2. To determine the speed at which vehicles can move 
in bumper-to-bumper tra�c on two single-lane roads that 
merge into one single-lane road, one can simulate this “net-
work” using a computer program. There are di�erent approach-
es to network simulation, which vary in speed and degree 
of realism. 
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At each point in (virtual) time, the simulator con-
siders the current location of each �it in the network; 
the routing algorithm, which is used to decide where 
each �it should go next; the internal switch architec-
ture, which controls how link contention is resolved 
(for example, a simple alternating of �its as illustrated 
by the cars in �gure 2); and all the myriad other char-
acteristics that determine performance. With regard to 
�gure 2, a simulator would need to take into consider-
ation not only the speed limits and layout of the road 
system but also the decision-making process of each 
driver on the road to know where the driver wants to 
go and how he will negotiate with other drivers as to 
who gets to go �rst when lanes merge. 

�ere are two main problems with �it-level simu-
lation, one inherent and one arti�cial. �e inherent 
problem is that simulating a large network at such a 
�ne level of detail is necessarily slow—vastly slower 
than real network hardware could run. �ousandfold 
slowdowns are not uncommon. In other words, the 
simulator might need to run for an hour to report how 
a network might behave over the course of a single 
second of execution. To put that slowdown in perspec-
tive, consider that many of the scienti�c applications 
commonly run on supercomputers at Los Alamos Na-
tional Laboratory take hours to days to run; a few even 
require months to over a year to complete. Dilating 
such times by a factor of a thousand clearly limits the 
practicality of simulating such applications. Conse-
quently, �it-level simulations must by necessity whittle 
down their inputs to a more manageable size, simulat-
ing only small networks and for only brief periods of 
time, which limits realism. 

�e arti�cial problem is that for simplicity of opera-
tion, simulators are typically fed synthetic communi-
cation patterns rather than communication patterns 
derived from actual supercomputing applications. For 
example, two common test patterns are uniformly 
random tra�c in which each node sends data to some 
number of other nodes selected at random, and hot-
spot tra�c in which all nodes send data to a small sub-
set of the nodes selected at random. Second, almost all 
simulation studies presented in the supercomputer-
network literature assume that communication begins 
at �xed points in time, typically exclusively at the start 
of the simulation. �ird, computation time is almost 
universally ignored, even though this can greatly a�ect 
the severity and impact of link contention. 

Returning to our car-and-road metaphor, typical 
simulator usage would be analogous to gauging the 
quality of a layout of a city street under assumptions 
like the following: 

1. People drive randomly from one place to another 
as opposed to, say, a bias to drive to the kids’ 
school at the beginning of the day, then to the 
o�ce, then to the kids’ school again, and �nally 
back home. 

2. Everyone leaves home at exactly 9:00 a.m., 
drives directly to his destination, and leaves 
the car there. A less-common variation on this 
assumption is that Alice picks up Bob at ex-
actly 8:15 a.m., Carol at exactly 8:30 a.m., and 
Dave at exactly 8:45 a.m. for their carpool to 
work—all regardless of how heavy or light the 
tra�c happened to be at the time or whether 
a new highway had just been built to speed up 
their commute. 

3. No one stops to work, shop, or relax; all anyone 
in the city does is drive.

It would be hard to lend much credence to any 
result of such a study, yet this is very much how super-
computer networks are analyzed today. Again, this is 
an arti�cial problem. �ere is no fundamental reason 
that such assumptions must be made; they are merely 
a convenience to simplify the simulation e�ort. In the 
next section, we describe how we are improving the 
state of the art in network-simulation technology, both 
in terms of simulation speed and simulation realism. 

A new approach to network simulation

Our goal is to address all of the shortcomings dis-
cussed above; in particular, our aim is to simulate all 
of the following: 

 Full-sized applications, not synthetic 
communication patterns; 

 Hours of application-execution time, 
not seconds; 

 Tens of thousands of nodes, not hundreds to 
low thousands; 

 Communication interleaved with computation, 
not treated as independent; and 

 Communication beginning when prior commu-
nication or computation ends, not at �xed points 
in time.
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�e two mechanisms that underlie our approach 
are �ow-based simulation and logical clocks. We now 
describe each of these in turn. 

Flow-based simulation

�e reason that �it-based simulation is so slow is that 
supercomputer networks contain a massive number 
of components, and each of these must be simulated 
individually. Logically, if one were to simulate large 
groups of components as single entities, this would 
greatly reduce the amount of work, and therefore time, 
required to run the simulation. We therefore choose 
to consider a complete, end-to-end communication 
operation as a single unit of simulation rather than 
the numerous �its that get transmitted as part of 
that operation. 

Before we explain the details precisely, we present 
the intuition behind our approach in terms of our run-
ning car-and-road analogy. Assuming a 40 mph speed 
limit and that the distance from the front of one car to 
the front of the next is 29 feet, the math works out to 
two cars per second passing any particular point on 
the road. Hence, if we knew that 100 cars wanted to go 
from point A to point B and that there was no other 
tra�c on the road, the �rst car in that sequence would 
arrive a�er some given length of time (i.e., however 
long it takes to drive from point A to point B on an 
empty road, say three minutes), and the last car would 
arrive 100 ÷ 2 = 50 seconds later. 

We now consider the variation indicated by �gure 
2: 100 yellow cars want to go from point A to point 
B at the same time that 100 red cars want to go from 
point C to point B. What impact does the shared seg-
ment of road have on the time it takes each of those 
two �ows of cars to reach their destination? As before, 
two cars per second are reaching point B, but because 
the two �ows are interleaved, only one yellow car per 
second and one red car per second can reach that 
location. �e �rst car in each �ow is not delayed, so it 
still takes our assumed three minutes to arrive at point 
B, but the last car in each �ow arrives not 50 seconds 
later but 100 ÷ 1 = 100 seconds later. 

�e point of this exercise is to demonstrate that, un-
like with �it-level simulation, we do not have to con-
sider each individual car’s behavior. Instead, we can 
analyze an entire sequence of cars at once, regardless 
of whether there are a hundred cars in each �ow or a 

million. Furthermore, we do not need to consider how 
the drivers negotiate the merge. All that matters is that 
there is an even 50–50 split between red and yellow 
cars on the merged segment of road, not that it went 
red–yellow–red–yellow versus red–red–yellow–yellow. 

Our approach to network simulation works in 
very much the same way as the preceding analysis 
of tra�c speeds. As in the above instance, instead 
of working with communication times directly, we 
work with communication rates, which we can easily 
relate back to time by noting that time = latency + 
(data size ÷ communication rate), where latency is 
the time it would take a single �it to move from the 
source node to the destination node in the absence 
of any other tra�c. For example, suppose that the 
latency between node A and node B is 0.6 seconds 
and that all of the links between node A and node 
B are capable of transmitting 5 gigabytes per sec-
ond. If node A were to transmit 1 gigabyte of data 
to node B, this communication would take a total of 
0.6 + (1.0 ÷ 5.0) = 0.8 seconds. 

While latencies are essentially constant and data 
sizes can be extracted from an application (as we 
will discuss further when we discuss logical clocks), 
communication rates vary dynamically based on the 
amount of link contention, the number of communica-
tions sharing a network link at any given time. Con-
sider the network topology shown in �gure 3 (i.e., a 
2-D mesh). 

FIGURE 3. An illustration of link contention on a 2-D mesh 
network topology.
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If node A sends data to node H via the route A–
B–E–H (cyan links) at the same time as node B sends 
data to node F via the route B–E–F (magenta links), 
the B–E link will be shared by the two routes. Sup-
posing the link is capable of transmitting at a rate of 5 
gigabytes per second, 2.5 gigabytes per second will be 
allocated to each of the two communications. Because 
data cannot enter a link faster than it can exit, this 
slow link then exerts back-pressure all the way to the 
source nodes, slowing down the entire communication 
to 2.5 gigabytes per second. Using the previously men-
tioned sample numbers from each of the two commu-
nications will now take 0.6 + (1.0 ÷ 2.5) = 1.0 seconds 
instead of the contention-free 0.8 seconds computed 
earlier—slower but notably not twice as slow, even 
though the link speed e�ectively halved. 

Logical clocks

We criticized prior simulation e�orts for relying on 
synthetic communication patterns instead of actual 
communication patterns derived from supercomput-
ing applications. Our question is therefore how we 
can acquire an application’s communication pat-
tern so that it can be analyzed by a simulator. �e 

enumeration of all communication that an application 
performs during its execution—which node sent how 
many bytes to whom when—is called a communication 
trace. Fortunately, intercepting and logging an applica-
tion’s communication operations is fairly straightfor-
ward, and there exist numerous tools for collecting 
communication traces. 

�e issue is not with collecting the trace but with in-
terpreting it. Figure 4 helps clarify the problem. Figure 
4(a) presents a trace of a communication pattern in 
which node A sent a message to node C, then node B 
sent a message to node C, then, a�er a brief interlude, 
node C sent a message to node A, and �nally, node 
C sent a message to node B. A graphical view of this 
trace is shown in �gure 4(b). Send and receive times 
are reported from the perspective of each node’s clock. 
For example, the �rst line of the table in �gure 4(a) 
indicates that node A reported that it sent a message 
to node C at time 10 and that node C reported that it 
received node A’s message at time 16. 

�e �rst problem with this type of communication 
trace is that supercomputer nodes seldom include per-
node clocks that are globally synchronized to within 
half a message latency (i.e., the tolerance needed to 

(a) Communication trace

Source  

Node

Destination 

Node

Sent  

Time

Received 

Time

A C 10 16

B C 14 20

C A 28 34

C B 30 36 35 40

N
o

d
e

C

B

A

0 5 10 15 20 25 30

Time

(b) Timeline view of the trace

(c) Communication trace with poorly synchronized clocks

Source  

Node

Destination 

Node

Sent  

Time

Received 

Time

A C 14  12

B C 14 16

C A 24 38

C B 26 36 35 40

N
o

d
e

C

B

A

0 5 10 15 20 25 30

Time

(d) Timeline view of the trace with poorly synchronized clocks

FIGURE 4. Example of a communication pattern. Figure (a) and (b) illustrate a communication trace of nodes with per-
fectly synchronized clocks (an unrealistic condition). Figure (c) and (d) illustrate a communication trace of nodes with poorly 
synchronized clocks. 
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avoid erroneous readings, as discussed 
below). �ese would represent a costly but 
rarely useful expense. Furthermore, access 
to a single, centralized clock would be dev-
astating to performance—imagine �gure 
2 with tens of thousands of lanes merging 
into one. Hence, some node clocks may run 
slightly ahead or behind others, and even 
worse, some node clocks may run slightly 
faster or slower than others. �is is called 
clock dri�. Although clock-synchronization 
algorithms exist, so�ware implementa-
tions are unable to synchronize clocks 
to a granularity �ne enough to measure 
network-communication time. 

Figure 4(c) represents the same trace as 
�gure 4(a) but as measured with node A’s 
clock running four time units late and node 
C’s clock running four time units early. As 
the graphical depiction of this trace in �g-
ure 4(d) clari�es, the faulty clocks make the �rst mes-
sage appear to have been received before it was sent, 
a physical impossibility. Furthermore, instead of each 
message taking a constant six time units to get from 
source to destination as indicated by the “perfect” 
trace in �gure 4(a), the B–C communication in �gure 
4(c) appears to take only two time units while the C–B 
communication appears to take ten. 

�e second problem with using �gure 4-style com-
munication traces involves how the simulator replays 
the traced communication pattern. Suppose we want-
ed to simulate a network that runs twice as fast as the 
one on which the communication trace was acquired 
or perhaps the same network attached to processors 
running three times as fast as on the measurement 
system. It would be unreasonable in either case to 
expect all of the messages to be sent at the same times 
shown in �gure 4(a). A node that receives a message 
sooner or �nishes some computation faster may then 
be able to send a message earlier. We therefore do not 
want our simulator necessarily to simulate messages 
being sent at the times listed in the input trace but 
rather at the times that the simulated supercomputer 
would actually send them. 

�e solution to both of the preceding problems is 
an abstraction called a logical clock, �rst proposed by 
Lamport in 1978 [2] and sometimes called a Lamport 
clock a�er its inventor. A logical clock is a simple, inte-
ger counter that “ticks” as follows: 

1. When a node performs any operation (commu-
nication or computation), its clock advances its 
logical time by one. 

2. When a node sends a message, its clock in-
cludes the current logical time along with the 
normal data. 

3. When a node receives a message, it sets its logi-
cal clock to the maximum of its current logical 
time and one plus the logical time included in 
the message.

�ese rules help de�ne a “happened before” relation 
(mathematically, a partial ordering) on communica-
tion operations. If one operation occurred at a smaller 
logical time than another, then the simulator cannot 
perform the second operation until the �rst one �n-
ishes. In contrast, if two operations occur at the same 
logical time, the simulator has no restrictions on the 
order it performs them: it can run A then B, B then A, 
or both simultaneously. In essence, a logical clock pro-
vides a way to globally order communication opera-
tions regardless of the locally observed time at which 
each operation may appear to have occurred. 

To clarify using yet another driving analogy, con-
sider Alice’s and Carol’s sequences of events, presented 
in �gure 5. 

In what order did those events happen? It would be 
incorrect to sort them by the times listed in the event 
descriptions because Alice and Carol may not have 
synchronized their watches beforehand and because 

 

Alice’s Journal

I left home at 3:30 p.m. to drive my 
son to soccer practice. When I got 
to the soccer field my watch read 
3:55 p.m.

I left the soccer field five minutes 
later, at 4:00 p.m., to join Carol for 
tea. I arrived at the tea house at the 
same time as Carol, at 4:30 p.m. 
according to my watch.

After a lovely hour of tea with Carol, 
we both drove home at the same 
time, when my watch read 5:30 
p.m. just in time to make dinner.

Carol’s Journal

I left home at 6:30 p.m. to join 
Alice for tea. I arrived at the tea 
house at 7:00 p.m. according to 
my watch, which is right when 
Alice arrived.

I had an enjoyable tea time with 
Alice. We both left 45 minutes later, 
at 7:45 p.m. on my watch, to drive 
home. I got home at 8:05 p.m.

FIGURE 5. The ordering of events from Alice’s and Carol’s perspective.
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either watch may run faster or slower than the other. 
Nevertheless, we can intuitively rely on what makes 
sense to order the speci�ed events. Speci�cally, we 
know that Alice must have driven to the soccer �eld 
before driving from the soccer �eld; we know that 
both Alice and Carol were at the tea house at the same 
time; and we know that both Alice and Carol le� the 
tea house at the same time a�er having tea together. 

Figure 6 shows how to express that “what makes 
sense” intuition as formal statements of changes to 
logical time. �e table assigns one logical clock to 
each location (as opposed to each person) mentioned 
and lists the events that Alice observed, in order, 
followed by the events that Carol observed, in order. 
(�e results would be the same if we swapped or even 
interleaved Alice’s and Carol’s journals, as long as the 
events were not reordered relative to how they ap-
pear in either journal.) In our network-simulation 
framework, locations correspond to nodes, and a 
person driving from location to location corresponds 
to communication. 

At the beginning, all locations are at logical time 
1, and Alice and Carol are both in their respective 
home. When Alice drives to the soccer �eld, she must 
arrive some time a�er she was at home. �e soccer 
�eld therefore increments its logical time to 2, the 

maximum of its current time (1) and one plus the 
time at Alice’s house (1 + 1). When Alice drives to the 
tea house, she must arrive some time a�er she le� the 
soccer �eld. �e tea house therefore increments its 
logical time to 3, the maximum of its current time (1) 
and one plus the time at the soccer �eld (1 + 2). When 
Alice drives home, she must arrive both a�er the last 
time she was there (1) and a�er she le� the tea house 
(3), that is to say, at time 4. 

Turning our attention to Carol, Carol must arrive 
at the tea house at a time later than when she was at 
home. However, the tea house’s clock does not change 
because the maximum of its current time (3) and 
one plus the time at Carol’s house (1 + 1) is already 3. 
Finally, when Carol drives home, she must arrive both 
a�er the last time she was there (1) and a�er she le� 
the tea house (3), that is to say, at time 4. 

For clarity, the bottom part of �gure 6 re-sorts the 
data by logical time, showing which events happened 
at each time. From this presentation, one can infer that 
despite the physical times stated in the event descrip-
tions, Alice could not possibly have returned home be-
fore Carol arrived at the tea house (time 4 versus time 
3). However, the logical-clock readings in �gure 6 say 
nothing about whether Alice arrived back at her home 
before Carol arrived back at her home (time 4 for 

Logical time spent at various locations

Event Alice’s House Carol’s House Soccer Field Tea House

(Our story begins) 1 1 1 1

Alice’s Soccer 1 1 2 1

Soccer Tea 1 1 2 3

Tea Alice’s 4 1 2 3

Carol’s Tea 4 1 2 3

Tea Carol’s 4 1 2 4

Logical Time Observable Events

1 Alice and Carol are both at home.

2 Alice is at the soccer �eld. Carol may be either at home or en route to the tea house. We have insu�cient 
information to determine which.

3 Alice and Carol are both at the tea house.

4 Alice and Carol are both at home. We have insu�cient information to determine who arrived �rst.

FIGURE 6. The ordering of events based on logical time.
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both events). More subtly, the readings do not indicate 
which of Alice or Carol arrived �rst at the tea house 
(as both soccer → tea and Carol’s → tea completed at 
time 3); we know only that neither le� (time 4) before 
both arrived (time 3). 

Logical clocks provide an important mechanism 
for ful�lling the goals stated at the beginning of this 
section in that they enable a network simulator to 
reason about communication dependencies—what 
must happen before what—rather than physical times. 
One additional innovation of our network-simulation 
methodology is that we record computation time in 
physical time. In �gure 6’s analogy, this would be like 
a waiter at the tea house reporting how long Alice 
and Carol spent there. Maintaining this information 
enables the simulator to honor computation time, 
which may have substantial impact on communication 
time. Consider, for example, how much faster the cars 
in �gure 2 would move if the yellow cars were on the 
road only in the morning and the red cars were on the 
road only in the a�ernoon. 

Even without perfectly synchronized, dri�-free 
node clocks, combining physical computation time 
with logical communication time enables us to ac-
curately reproduce application timing measurements 
and provide some con�dence that varying hardware 
parameters will lead to accurate predictions of perfor-
mance. In the following section we quantify how well 
this works by presenting an early evaluation of our 
simulation methodology. 

Initial results

Our simulation project is still in its early stages. 
However, the logical-time trace acquisition so�ware 
and the simulator itself are operational and support 
a su�cient set of features for an initial evaluation of 
our approach. 

As a sample application, we use a hydrodynamics 
code developed at Los Alamos National Laboratory 
called PAGOSA. PAGOSA is designed to simulate 
high-speed �uid �ow and high-rate material defor-
mation [1]. �e application comprises approximately 
67,000 lines of code (about 1,000 printed pages), 
mostly written in Fortran but with some C. PAGOSA’s 
constituent processes are logically arranged in a 
three-dimensional layout and communicate primarily 

with their immediate north, south, east, west, front, 
and back neighbors. �is is an ideal structure for a 
three-dimensional network such as the one shown 
in �gure 1(c) if the application’s coordinates directly 
map to the network’s coordinates. For example, map-
ping a 6 × 6 × 6 PAGOSA layout onto a 6 × 6 × 6 
network could be expected to perform well. In con-
trast, mapping it onto a 6 × 4 × 9 network would in 
fact make some “neighbors” not adjacent to each 
other, leading to link contention. In practice, users are 
rarely given control over the set of nodes allocated to 
their applications. 

We ran PAGOSA on 1,000 nodes of a 1,600-node 
supercomputer called Mustang. Mustang is based on a 
fat-tree network such as the one shown in �gure 1(b), 
but 200 times larger. More precisely, �gure 1(b) repre-
sents what is o�en called a 2-ary 3-tree, because each 
switch connects to two switches in each adjacent row 
and there are three rows of switches. Mustang uses an 
18-ary 3-treea so each switch connects to 18 switches 
in each adjacent row, but there are still only three rows 
in the network, just as in �gure 1(b). As of June 2013, 
Mustang was rated the 137th fastest supercomputer in 
the world [3]. 

Full-application simulation at scale

PAGOSA was con�gured to execute a canonical 
hydrodynamics test problem, the simulation of a 
spherical shell of beryllium being subjected from all 
directions to a given amount of kinetic energy, which 
compresses the shell. Figure 7 presents the results of 
simulating this PAGOSA execution using the sets of 
network parameters listed in table 1. 

�e �rst bar, labeled Fat tree, measured, indicates 
that the PAGOSA test problem normally takes an hour 
and a half to complete on Mustang. �e second bar, 
Fat tree, demonstrates that our simulator is quite ac-
curate, being only 6.4% above the correct value. Recall 
that our work is still in its early stages; we hope in the 
near future to improve simulation accuracy. �e sec-
ond and subsequent bars each represent between 14½ 
and 15½ hours of time running the simulator on a 
single desktop computer. �is is a noteworthy success: 
Even though we used a thousandth of the number of 
nodes as in the real execution, our simulator took only 
tenfold the time to run. And, unlike real execution, 

a. Mustang in fact contains an incomplete 18-ary 3-tree—an XGFT (3; 18, 6, 16; 1 6 18) in Öhring’s notation [4]—and this is what 
we simulate.



16

Predicting the performance of extreme-scale supercomputer networks

our simulator enables limitless “what if ” experimenta-
tion with di�erent network topologies and network 
performance characteristics. 

As a demonstration of that capability, the remain-
ing bars in �gure 7 show the results of simulating 
di�erent networks from Mustang’s actual network. As 
detailed in table 1, Fat tree, slow represents a substan-
tially slower network than Fat tree. 3-D torus uses the 
same network speeds as Fat tree but with a 3-D torus 
topology instead of a fat tree. Likewise, 3-D torus, slow 
uses the same network speeds as Fat tree, slow but with 
a 3-D torus topology instead of a fat tree. 3-D torus, 
shu�ed represents the same topology and network 
speeds as 3-D torus but randomly shu�es the mapping 
of PAGOSA processes to torus nodes. Torus networks 
are notoriously sensitive to process placement, and we 
can use our simulation technology to evaluate how 
sensitive a given application is to the placement of its 
constituent processes. 

�e clear implication of �gure 7 is that PAGOSA’s 
overall performance is almost completely oblivi-
ous to network performance. Despite the simulated 
variations in network topologies and speeds, the 
di�erence in execution time from one network to 
another is a tiny fraction of a percent. Although the 
1,000-node run of PAGOSA communicated an ag-
gregate of two billion messages comprising a total 
of 14 terabytes of data, communication time is so 
dominated by computation time that network speed is 
largely inconsequential. 

Comparison with simplistic simulators

We have shown that �ow-based simulation delivers 
simulation speed and that logical clocks provide high 
�delity to actual application execution time. �e next 
question to consider is how our approach compares to 
the more simplistic approach employed by most net-
work-simulation studies. While our simulator honors 
both communication dependencies and computation 
time, it is far more typical in the simulation literature 
to pretend that all messages are sent simultaneously at 
time 0 and to simulate the time it takes all messages to 
reach their destination in the absence of computation. 

We con�gured our simulator to disregard commu-
nication dependencies and computation time, in es-
sence dumbing down our simulator to the capabilities 
of a more traditional network simulator. �e results, 
shown in �gure 8, paint a very di�erent picture of 
performance from �gure 7. 

�e total height of each bar represents the time 
for the last message in the corresponding simula-
tion to complete. �e light purple region represents 
the average time for a message to complete. While 
�gure 7 indicates that PAGOSA’s total execution time 
is almost completely independent of communication 
time, �gure 8 exaggerates the di�erences. Speci�cally, 
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FIGURE 7. Simulated PAGOSA execution time using the sets of 
network parameters in table 1. 

TABLE 1. Simulation parameters

Simulation Topology Link Speed (Gbps) Switch Latency (ns) Software Overhead (ns)

Fat tree 18-ary 3-tree 40 100 1,500

Fat tree, slow 18-ary 3-tree 10 400 4,000

3-D torus 8 x 16 x 16 torus 40 100 1,500

3-D torus, slow 8 x 16 x 16 torus 10 400 4,000

3-D torus, shu�ed 8 x 16 x 16 torus 40 100 1,500
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FIGURE 8. Di�erences in simulated communication time only.

the 3-D torus requires 70% more time than the fat tree 
to transfer PAGOSA’s two billion messages. For both 
network topologies, quartering the bandwidth exactly 
quadruples the communication time. 

�is study demonstrates that it is critical to include 
communication dependencies and computation time 
in a network simulation. Otherwise, di�erences in net-
work topology and basic performance characteristics 
appear more signi�cant than they really are. �is mis-
leading information could persuade a supercomputing 
center to pay extra for a faster network when a slower, 
less expensive network may deliver almost exactly the 
same performance to applications. 

Conclusions

Modern supercomputers are architected as vast aggre-
gations of processors interconnected with high-speed 
networks. Because scienti�c applications are generally 
composed of myriad processes working together to 
simulate natural phenomena, communication speed 
is critical for e�ciently coordinating all of those 
processes. However, engineering a high-speed net-
work involves inevitable cost/performance trade-o�s. 
Furthermore, all applications use the network dif-
ferently, contraindicating a one-size-�ts-all solution. 
Some applications transmit a large number of small 
messages; others transmit a small number of large 
messages. In some applications, each node commu-
nicates with only a small set of other nodes; in others, 
all nodes communicate with all of the others. Some 
applications communicate continuously throughout 
their execution; others alternate communication and 
computation phases. 

Supercomputing centers want to maximize the 
overall performance delivered to the applications they 
expect to run but without overpaying for unneces-
sary network performance. One way to predict how 
well a given application will perform on a particular 
network in advance of its procurement is via a tech-
nique called network simulation. With simulation, one 
mimics hardware’s behavior and performance charac-
teristics using a so�ware test bed. Simulating hard-
ware is slower—typically many thousands of times 
slower—than running on true hardware but is cheap 
to deploy and easy to modify to investigate di�erent 
design alternatives. 

�e problem with existing network simulators and 
simulation studies is that they tend to incorporate so 
much detail that they cannot handle large numbers of 
nodes or substantial lengths of time. Furthermore, for 
simplicity of implementation they ignore the juxta-
position of communication with computation and 
with other communication, unrealistically assuming 
that all messages are initiated in a single burst. In this 
article we proposed addressing the speed issue with 
�ow-based simulation and the realistic-usage issue 
with logical clocks that are augmented with physical 
computation time. To demonstrate the potential of 
this approach we implemented a tool to derive logical-
time traces from parallel applications and a �ow-based 
simulator to replay those traces on di�erent simu-
lated network topologies and with di�erent network 
performance characteristics. 

One can draw the following conclusions from the 
experimental data we presented. First, our approach 
accurately simulates real execution time. Although 
our implementation is in its nascent stages, we already 
saw less than 7% error when simulating a scienti�c 
application, PAGOSA, running for an hour and a half 
across a 1,000-node network. Second, �ow-based 
simulation runs at reasonable speeds. We replayed that 
1,000-node, hour-and-a-half run on di�erent simu-
lated networks using only a single node, and it ran 
only 10 times slower than real time, not thousands or 
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tens of thousands, which is what is typical for a more 
traditional network simulator. �ird, the common 
simpli�cation of ignoring communication dependen-
cies and computation time in network simulations 
exaggerates the pressure the application applies to 
the network and leads to incorrect assessments of 
network performance. 

In our experiments, we found that PAGOSA per-
forms so much computation relative to communica-
tion that the network topology and basic performance 
characteristics are largely inconsequential. In contrast, 
a more traditional network simulator would incorrect-
ly claim 70% more performance for a fat-tree topology 
than for a 3-D torus topology when replaying PAGO-
SA’s communication pattern. 

In summary, combining logical time with �ow-
based simulation opens up new avenues for evaluating 
how fast applications will run on di�erent super-
computer networks, most notably supercomputer 
networks that have not yet been built. �is capability 
can inform network design decisions—or even simply 
a selection from multiple existing networks—to help 
provide applications with the best communication 
performance that the supercomputer budget allows.  
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